Team members Agostino Poggi (Full professor) Coordinator Sowide GroupStefano Cagnoni (Associate professor) Coordinator IBIS LabMonica Mordonini (Associate professor) Michele Tomaiuolo (Associate professor) Contact referenceGianfranco Lombardo (Postdoctoral researcher) Mattia Pellegrino (PhD student) Federico Zucchi (Research Assistant)http://sowide.unipr.it
The research group operates at the Department of Engineering and Architecture, University of Parma. The group’s research activity is carried out in two laboratories: SoWIDE (Social web, intelligent and distributed systems engineering) and IBISLab (Intelligent Bio-Inspired Systems Laboratory, http://ibislab.ce.unipr.it). The group members do research on: Big Data, Artificial Intelligence, with particular regard to Distributed Systems, Social Network and Sentiment Analysis (SoWide); Biologically-inspired Computational Paradigms for the Optimization and Design of Artificial Intelligence systems, and Explainable AI (IBISLab). In particular, current research work deals with the following fields: Big data and social media analysis: natural language processing, sentiment analysis, emotion detection, information retrieval, troll detection, social network analysis, graph analytics, data mining.Artificial intelligence: machine learning, swarm intelligence, evolutionary computing, neural network, semantic web, computer vision, pattern recognition, explainable Artificial Intelligence.Distributed systems: multi-agent and actor-based systems, agent-based modelling and simulation, large-scale graph processing and simulations, peer-to-peer social networks, trust management. Software development: agent-oriented and object-oriented programming, paradigms and languages, computational thinking, high performance computing.Applications of soft computing: optimization and design of pattern recognition systems based on evolutionary/co-evolutionary computing and swarm intelligence paradigmsPerformance optimization of metaheuristics based on High-Performance/GPU computing.
Recent Research Projects Studio, progettazione e sviluppo di innovativa selezionatrice per la cernita del prodotto (ortaggi e frutta) in base a forma e colore, 2015-2018, finanziamento privato (PROTEC).NOAH, 2016-2018, UE, http://www.noahproject.eu/ENSAFE, 2015-2017, UE, https://www.ensafe-aal.com/home/Supercomputing Unified Platform Emilia-Romagna (SUPER), 2019-2022, POR-FESR Emilia RomagnaAnalisi dati, processi e tempi intraoperatori per l’ottimizzazione dei processi ospedalieri - ML-MED Tracking, 2019-2021, FIL 2019 (quota incentivante).Generative adversarial networks and competitive co-Evolutionary algorithms for Image Synthesis, 2022-2024, FIL 2020 (quota incentivante) e Fondazione Cariparma.Identification of Prognostic and Predictive Radio-Immune-Genomic Signatures in Small Cell Lung Cancer (SCLC) and Malignant Pleural Mesothelioma (MPM), 2022-2024, Bando di Ateneo 2021 per la ricerca - Action: A - Progetti di ricerca di consolidamento o scouting.
Selected publications Lombardo, G., Pellegrino, M., Tomaiuolo, M., Cagnoni, S., Mordonini, M., Giacobini, M., & Poggi, A. (2022). Fine-Grained Agent-Based Modeling to Predict Covid-19 Spreading and Effect of Policies in Large-Scale Scenarios. IEEE Journal of Biomedical and Health Informatics., vol. 26, no. 5, pp. 2052-2062, doi: 10.1109/JBHI.2022.3160243.Lombardo, G., Poggi, A., & Tomaiuolo, M. (2022). Continual representation learning for node classification in power-law graphs. Future Generation Computer Systems, 128, 420-428.Lombardo, G., Tomaiuolo, M., Mordonini, M., Codeluppi, G., & Poggi, A. (2022). Mobility in Unsupervised Word Embeddings for Knowledge Extraction—The Scholars’ Trajectories across Research Topics. Future Internet, 14(1), 25.Pellegrino, M. Lombardo, G. Cagnoni, S., & Poggi, A. (2022). High-Performance Computing and ABMS for High-Resolution COVID-19 Spreading Simulation. Future Internet 2022, 14, 83.Bacardit, J., Brownlee, A., Cagnoni, S., Lacca, G., McCall, J., & Walker, D. (2022). The intersection of Evolutionary Computation and Explainable AI, Genetic and Evolutionary Computation Conference: GECCO'22.Adosoglou, G., Lombardo, G., & Pardalos, P.M. (2021). Neural network embeddings on corporate annual filings for portfolio selection. Expert Systems with Applications, 164, art. no. 114053. DOI: 10.1016/j.eswa.2020.114053Petrosino, G., Bergenti, F., Lombardo, G., Mordonini, M., Poggi, A., Tomaiuolo, M., & Cagnoni, S. (2021). Island model in ActoDatA: an actor-based implementation of a classical distributed evolutionary computation paradigm, Genetic and Evolutionary Computation Conference 2021, Companion Proceedings, pp. 1801-1808.Cagnoni, S., Cozzini, L., Lombardo, G., Mordonini, M., Poggi, A., & Tomaiuolo, M. (2020). Emotion-based analysis of programming languages on Stack Overflow. ICT Express, 6 (3)., pp. 238-242. DOI: 10.1016/j.icte.2020.07.002Tomaiuolo, M., Lombardo, G., Mordonini, M., Cagnoni, S., & Poggi, A. (2020). A survey on troll detection. Future Internet, 12 (2)., art. no. 31. DOI: 10.3390/fi12020031Bergenti, F., Caire, G., Monica, S., & Poggi, A. (2020). The first twenty years of agent-based software development with JADE. Autonomous Agents and Multi-Agent Systems, 34(2), 1-19. DOI: 10.1007/s10458-020-09460-zTomaiuolo, M. (2020). Applicability of artificial intelligence models. Neural Computing and Applications, 32(19), 15279-15280. DOI: 10.1007/s00521-020-05265-zBellini, V., Guzzon, M., Bigliardi, B., Mordonini, M., Filippelli, S., & Bignami, E. (2020). Artificial intelligence: a new tool in operating room management. Role of machine learning models in operating room optimization. Journal of medical systems, 44(1), 1-10. DOI: 10.1007/s10916-019-1512-1Magliani, F., Sani, L., Cagnoni, S., & Prati, A. (2020). Diffusion Parameters Analysis in a Content-Based Image Retrieval Task for Mobile Vision. Sensors, 20(16), 4449. DOI: 10.3390/s20164449.Ugolotti, R., Sani, L., & Cagnoni, S. (2019). What can we learn from multi-objective meta-optimization of Evolutionary Algorithms in continuous domains? Mathematics, 7(3), 232. DOI: 10.3390/math7030232Sani, L., Pecori, R., Mordonini, M., & Cagnoni, S. (2019). From complex system analysis to pattern recognition: Experimental assessment of an unsupervised feature extraction method based on the Relevance Index metrics. Computation, 7(3), 39. DOI: 10.3390/computation7030039 Bianchi, V., Bassoli, M., Lombardo, G., Fornacciari, P., Mordonini, M., & De Munari, I. (2019). IoT Wearable Sensor and Deep Learning: An Integrated Approach for Personalized Human Activity Recognition in a Smart Home Environment. IEEE Internet of Things Journal, 6 (5)., art. no. 8727452, pp. 8553-8562. DOI: 10.1109/JIOT.2019.2920283Lombardo, G., Fornacciari, P., Mordonini, M., Sani, L., & Tomaiuolo, M. (2019). A combined approach for the analysis of support groups on Facebook - the case of patients of hidradenitis suppurativa. Multimedia Tools and Applications, 78 (3), pp. 3321-3339. DOI: 10.1007/s11042-018-6512-5 Lombardo, G., Fornacciari, P., Mordonini, M., Tomaiuolo, M., & Poggi, A. (2019). A multi-agent architecture for data analysis. Future Internet, 11 (2)., art. no. 49. DOI: 10.3390/fi11020049Fornacciari, P., Mordonini, M., Poggi, A., Sani, L., & Tomaiuolo, M. (2018). A holistic system for troll detection on Twitter. Computers in Human Behavior, 89, pp. 258-268. DOI: 10.1016/j.chb.2018.08.008Villani M., Sani L., Pecori R., Amoretti M., Roli A., Mordonini M., Serra R., & Cagnoni S. (2018). An iterative information-theoretic approach to the detection of structures in complex systems. Complexity, 2018, art. no. 3687839. DOI: 10.1155/2018/3687839